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INTRODUCTION

Wavelet bases are often presented as a powerful too! to perform the ap-
proximation and the numerical rosolutron of partial differential equations
Indeed, thanks to zero moment and localisation properties, wavelet spaces
are self adapted tc the solution and therefore may allow fast and accurate
resolution. in the last few vears different algorithms have been successfully
tested on linear and non-linear equations [9' [12]. Nevertheles:, most of the
addressed problems where posed in the periodic framework which circum-
vents the difficulties generated by general boundary conditions, but which
makes nearly impossible the treatments of real probler s.

1t ‘s known [3] that under very general hypotheses, one can only consider
homogeneous conditions. Therefore, we are driven to the construction of ap-
proximation spaces for homogeneous functional spaces on the interval. For
example, for problermn involving homogeneous [hirichlet conditions on 0.1}
ie (0} = w(l) = 0, the soiution u could be reached in the Scbolev space
Hio. 1)) = {u e £)([0,1}) u(0) = u(1) = 0} and this ieads to the construc-
tion of approximation spaces for /11([0.1}). Various constructions have been
prop« ed {see Auscher [2], in {4] and references in it) but are not, according to
their authors, numericaliv tractable. The proposed construct: .o follows the
one of Cohen et al. ({1]). After 2 short recall of this preliminary construction

we introduce and apalyze the homogeneous space copstruction. Numerical
detalls are provided.

I THE PRELIMINARY CONSTRUCTION
OF COPEN, DAUBECHIES AND VIAL

This construction of wavelets on the integval, ([1'). is derived from the com-
pactly supported wavelst multi resolution analvsis on the line introduced by
1. Daubechies 15].

In the case of E?() this multi resolution analysis is classically given by
a sequence of closed subspaces V) satisfving:

VoLV Cle o W Voo LR, Mgt = {0] and [Jgg ¥, =
LR)



Moreover, eacl. V, is spanned by the translations of the dilated version of a
fixed function, the scaling function #, i.e V, = span{2/3¢(. - k), k€ Z).
Here, the family {2¥/?¢{(2. — k). k € &} is orthonormal and ¢ is on the
nne hand compactly supported and on the other hand such that its Fourier
«rensform ¢ satisfies the Strang and Fix approximation rules of order N-1
7).
$M(2kx) =0, ke Z\{D}). n=0,.. N1 (1)

One consequence of (1) is that the family, {&(. ~ k), &k € X}, can
reproduce locaily the polynomials of degree at most & — 1.

The support of ¢ is the interval [~ N + 1, N} and the regulanity of ¢ is
asympiotically C°%Y [5]. Moreover. & is solution of the following scaling
equalion:

N
)= Y he(2r ~ k) (2)
b~ N 41

The detail spaces W, are defined as vhe orthogonal complements of V, in
‘"‘;*.‘, ie-

W, = Vun () (3]
and. thanks to 1) e
Uw, = LR
1€X

The essential feature of mulii resolution ans'vsis (see Y. Mever {111} is that

v such that V€ &
W, = span (2/0:(2. — k), k¢ X).
Again, the family {2/2(2. - k). k € &)} is orthonormal. The function

v 13 here a cotnpactly supported wavelet and 13 obtained fromn the following
detayl equation

N
Wir) - x nollr k) (4
k» N+t



Morecver suppiv') = supp(4) and ¢ has the same regularity as ¢. In addition.
because of the approximation properties of 1, and the definition of Wy, v
has got N vanishing moments, i.e:

/:'g:(:) =0 =0, N-1

Finally, the family {¢,a(z) = 2/?p(¥z —~ &)} is an unconditional basis for
various functional spaces such as Holde: spaces C*(RR) or Sobolev spaces
H'(R)'.

In (1], the goal of I. Daubechies et al. was to construct a family of wavelet
basis oan the interval (0.1} able to characterize 22(10, 1])). H*([0,1}) or C*([0.1))
while preserving the most attractive properties of multi +soluticn analysis
of L}(IR), despite the jack of shift invariance of L3({0,1]) (1his is not the case
for the constructions of P. Auscher { in [4])).

We give in the following paragraph an outline of the construction but the
reader shouid refer 1o |1} for details.

The construction is performed in two steps as foilows.

The fust step consists in defining suitable subspaces of L2({0,1]) from
a basis esseatially consiructed from the translated version: >f a rescaled
furiction, while the second step consists in the construction of the detail
spaces with the same requirement.

More precisely, in the first atep, V,([0.1}) is ~onstructed as follows:

Thanks to the compact support of ¢, for large enough values of j and
k=N, .2 - N -1 the support of the functions é(2'z - &) is included in
[0,1]. Therejore, b - corresponding functions ray be used as the inferior basis
functions of V;(|0,1}) and the set &, = {$(Px-%), k=N, .. ¥-N-1}(;
stands for interior) is then defined. To fully define V;([0,1}). N ¢dge functions
are added at each boundary of [(,1] to eoinplete the basis ®;. These two
farnilies of .V functions, ®g0 = {¢9,, k=0...,¥-1} and &, = {eie k=
2 ~ N.....2 ~ ]} are constructed to have minimal support and, such that
the order of approximation, (N), related to the interior functions is kep.
In other words, all polynormials of degree lers than ¥ — | should be locally
expandable as a linear combination of the basis functions of V,(]0,1]). Let us

"We remind that . s € R, f belougs to H*(I) if sad onlv if Yoex {m)i?(1 + 22 <
+oc and that for 0 < a < 1, f € C* if and only of |f(r + k)~ f(£)| < Cla]® for every
z.hw R, the constant € not depending on « and A

3




recall the construction of ® 5o (the same applies to $g ). The edge functions
®5, are defined for £ = 0,..., ¥ — 1 as the restriction to [0.1] of a specific
livear combination of the family {#(r — k)such that 0 € supp(o{x k)}.
More precisely.

2N--3

Lu(@) =27 Y () 8Pz 4n-N41) xpu) (5)
Rmk

The supports supp(,?,) are staggered. i.e, supp(xd;) = [0, 2¥51=4] and o0,
is & polynomial of degree k on the interval [0.2] (see Figure 1 for example).
Indeed. T, n*@(z — n) is a polynomial of order k [1} and (:) is & polvnormial
in n of degree .

By constiuction, $ro L ¥; but 50 s vot an orthonormal family. An
orthonormalization procedure using the Grarn-Schmidt algorithm is then pe:-
formed. Starting from ¢%x_, down to ¢J, one obtains N orthonormal edge
functions {¢9,. k =0,..., N =1} with staggered support [0, ¥ + k] and still,
@) 4ip,a-s) is @ polvnomial of degree &.

Finally. ¥){[0.1]) is then by definition generated by the orthonormal family
S50V L RE:
{#: k=0,.,¥-1}
U
V(0. 1)) = span{ {éjn, k=N X - N -1} (6)

U
(P k=2 =N 2~1)

with 0, = 22/2¢(2’z — k). One gets
Vol 0.1]) € Vi ([0.1]) € ... ¢ V(0. 1)) ¢ ...L*[0,1])

where j; is chosen so that suppori{®go) N supporti®p ) = 8. As ¢4, the
edge funciions satisfly a modified scaling equetion (2). one writes

N1 N+2k
<0 0 -0 0 o : -
L 2N B Z hk.n"]#l.ﬂ + Z hk‘n‘j}*ﬂ.n k= 0,....N 1 (‘)
nal ax N

Tie numerical values of the coefficients {A},. n = 0., N + 2k k —
0. N-1land {h} . n==3+W-N-2k-3 =) k=2 N -]}
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for the right edge, are computed in {1].

The second step of the construction is the definition of a suitable basis
for the usual wavelet space W,([0.1}]) = V,,([0.1]) N (V,([O,l]))l'. Thanks
10 (3) and to the compact support of ¢, for large values of j , the family
O, = {w(2r k), k=N_.¥~N-1} belong to W;([0,1]). Wavelets
of this family constitute a first pari of the basis of W;([0,1]) and are called
the interior wavelets. Since dim(W,({0.1]) = 2, N other wavelets at each
edge should be added to ¥;. Again, we only recal! the construction at the
edge r == 0. Ti~ complementary wavelets are deduced from the definition of
W;{[0.1]) as

N-1
9”?& = '\5?4»1.& - Z (v"?u.w;‘*f...) Sz‘?.u k=0, N=-1 (8)

=
where (.,.) stands for *he scalar product of L}*({0.1]). By construction they
are orthogonal to V,{[0,1]) and to the interior wavelets. Their supports are no
longer staggered, but an iterative process described in [1] reduces the support
of v¥ to [0.8%%] ipstead of [0,2%71). The last step of this onstruction
consists again of a Gram-Schmidt orthonormalization. Starting from &k = 0
up to N —1 one gets N orthonormalized wavelets for the keft edge, {w}.". k=

0.....N —1}. These wavelets are known through the coefficients {g) .. n =
0....N4+2k; k=0.....N -1} that occur in the modified details equation:
} A- N4k
';.’,?,k = }__,, 92,1«&?4»)3 + 2, gg.né)'#l-ﬂ k= 0\'"* ’\' -1 (9)
Nwt) wnaN

$([0. 1) is therefore entirely characterized by

(0. k=0, N-1}
| U
W,([0,1)) = span{ {vn. k=N, 2~ N-1} (10
) U
(W e k=2 N2 1)

Since

L2{0.1]) = ¥, ([0.1)) (P Wi((0.1)

1Zm




one gets an orthonormal basis of L3([0, I}) as:

{4&?.0.“ k=0,...N~-1} {J’?g k=0,.,N-1}
U u
{én'k, * T ‘\7,...,2” - 4\7 - 1} U {‘f’,k’ k = -N"'----z, - ‘\" - 1}
U ”7Zx U
(ohe k=20 —N 201} el B=2 - N2 1)
(11)
Remarks:

As we have said before, these wavelets bases are very attractive because
thev preserve the main features of the whole line construction. More pre-
cisely, since the edge functions are finite linear combinetions of some shifts
of é, they have the same regularity. From their definition the edge scaling
funciions generate ell the polynomials up to degree N - 1 which ensure an
order \' approximation over all the interval, and the exisience of N van-
ishing moinents for the edge wavelets. With these oscillations and enough
regularity, these wavelets basis form an unconditional basis for the Holder
spaces C*([0,1]) [1). The fast wavelet transform [10] which is essential for
most numerical applications is preserved even near the boundary thanks to
the modified scaling, (7) and detail, (9) relations.

Cur aim is to adapt this construction to obtain wavelet families generating
funct; nal spaces with barnogenecus boundary conditions. More precisely we
will consider the following constraints

FE0) = f1EI ) = 0,
where () is the i-th derivative of f.

As wiil be showu, most of the above construction will be preserved as
well as numencal efficiency.
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II MULTIRESOLUTION ANALYSIS WITH
HOMOGENEGUS BOUNDARY CONDI-
TIONS

This section is devoted to the construction and the properties of compactly
supported wavelet satisfying homogenecus conditions of tvpe f(CL0)(0) =
fleE 1) = 0.

The starting point has been described in the previous section and, keeping
the same notations, we now assurne that the compacily supported wavelets on
the line satisfy 0 < CLO.CL1 < N -1 and r > max(CLO.CL1). Therefore,
the spaces V,{[0.1]) defined in (6) are included in C*([0,1}) with r > 3 >
mazx{CL0,CL)).

JI.1 Coustruction

As in the previous section, we only focus on the Jeft edge r = 0
According to (6).every function f, € ¥,((0,1]) is written

YV-N-i

fi{z) = Ec)t»,k*" Z Cad+ Z LT (12)

kxd? - N

Moreover. only the lef edge functious &5 o are non zero around r = 0 and
then

V-1
£990) = T 6.(52) o). (13)

)
Therefore one way 10 impose f1“L9)(0) = G is to enforce that all the left edge
scaling functions satisfv this condition. Following P. Auscher (in [2]). this

constraint can be related ¢ a polynomial behavior.

Indeed, from the last section we learned that @9, is a po]vnomial of de-
gree N — 1 on the interval {0. L], say for cxamplc pialz) = a% + alyr 4+

-+ G_’,\. '2%-1. The CLO-nth detivative of @° ¢ at 0 is then equal to o {0,
"LO) b
Therelore (‘1’ l)‘ (0) = 0 &= aﬁ” = 0. The construction of scaling

functions satisfying ¢{“9N0) = 0 is then equivalent to the construction of
edge functions swch that thewr vestrictions to [0.277] as no component on the
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. ~
moromial xC°

The first step of our algorithm is then to construct 2 family of N edge
scaling functions €x0 = {éz’:, kx=0,.,N-1} and one of N edge vavelets
W50 = {;S,',, » &k =0,..,¥ — 1} with the particularity that only one scaling
function and one wavelet contain r¢%° on their polynomial part. The second
step is to remove the scaling function containing z¢%° and to modify the
corresponding wavelets. For simplicity we work on the interval [0,4-0c[ with
a zero dilation scale (; = 0), omitied in the next notations. Moreover, we
call pi(z) = @} + a}z + ... + af* the restriction of ¢J{z) on /0.1].

We start with the first ¥ edge scaling functions (5) of section I. They are
defined with the coefficients af , %o that

SN -2t-2
Sr) = Za,,y, (2r)+ Y. of.é2z-n) k=0, N -1(14)

ax N

{see {1] for the computation of these coefficients). The following propasition
tells us how Lo modify ¢ to eliminate x€4€ in the polynomials pi. k # CLO.
We call 32 the new functions and py(x) = I'5¢ i o

Proposition Ii.1 The famuy {:2. k=0...,N — 1} defined by:

= vh CLO (15)
& = ¢ - el i: C‘LOH N1

unth

0 k-1 o
o = OCLop = LiscLot) Qah
= g 0
Acgacro ~ Cir

is =uch af1® = 0,Vk # CLO.



Proof:

The existence of A, is always ensured for & ¥ CLO since o, = 2°*
(1]. Because p is a pol\mmial of degree k, there is nothing to change for
k < CLO, and therefore 3 = ) as well as pa(z) = pa(z) for & < CLO. Given
k > CLO. let us suppose that VI < k,! # CLO,a{™ = 0. From relation (14)
we obtain the following scaling relation for }:

A= D50k — Wolpo) #(22)

+AxCL0 $00(28) + 0 cron $Rr0a(28)+ . +af,y 2h(2r)

+ Laxd™ el - haly,,) &2z —n)
(16)
where
k-
Arcro = ol — M (@Qocro—ala)+ 2 ol
i=CLO+1
Since #(2r ~ n)wn1/3) = 0 for n > N, the contribution of the third RHS
term of 16 to §i} is 0. Moreover, for 0 < i < k, $°(2r) = p¥(2r) are polynomial
with no component on €X° Therefore, the oonmbution of pf to 2P s
eotirely due to Ay cro and Azcre = 0 is the condition we are looking for,
that completes the proof. =

For & 2 C L0 the supports of (3] are no longer staggered but. in compen-
sation V£,0 < k < N ~ 1,880y is still a polynomial of degree k. Therefore
the functions ¢2.0 < & < N —~ | are independent. Moreover, they are or-
thonormal to the {é(x — n). n > N} siace they are linear combinations of
the {-,pg, k=0, ., N-1})

Following the previous section we now orthogonalize the family {$2.0 <
k < N -1}, keeping the “monomial independence.” The only thing io do is:
to exchange the place of 52, and 3% _, defore starting the algorithm from
tider 0 wp to N-1. The result is an orthonormal family of & cdge scaling
functions {py’ *, k 0,.... N = 1} with the particularity that only g} _, . the

restriction of 3%, on '_0 l] contains x¢t% They satisfy a modified scaling
equation:

LS IN-2
Gtz = Y Hp ot 20+ Y MY H2r-n) k=0, A - K(1T)
=0 =N
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with H?,N—l =0 for k= 0,.,., N-2

The construction of the N edge scaling functions for the right edge comes
from the same algorithm for the half line |-oc 0] The it k=2 N4

.+ 22 =1} are independent of 2€L! and only ¢33;% ,; contains this monomial

on (0,1

After a dilatation of 2’ for the 0 and | edge functions and adding the
2 — 2N interior scaling functions ¢4, one gets therefore a new m’tbonormal
basis of V;([0.1}). the space defined by (6). In this family, only u;, Cro (resp.
@,.¢11) contributes to €0 (resp. 1) on [0,277) (resp. {1 - 277, 1)).

To perform our first step of construction we now continue b_v 1solating a
siugle wavelet containing £“2° on [0,1/2).

As in the previcus section N wavelets at each boundary should be added
to the interior family ¥;. Focusing again on the left edge, we construct a
first family following (8) as

N=1

¥(a) = grt(2r) - Y (ph (22), 904 (2)) #04(=)  k=0...N - W8)

a0

Again, each function w{(z) is pelynomial on thc xnterni {0,1/ 2]

However, since for all k, v depends on gp\ -1» all the ¥? contaius the
monomial £ and are thcrcfom not suitable for our first step (we remind
that we want tc construct a family of edge wavelets such that oniy one
contains €% on 0,1/27). Still, from (17) and (18) we deduce a modified
detail equation for these functions that writes

IN-?

N-1
Vile)= L Baa 20+ L Reé2r -l k=0 N -1 (19)
A

The following proposition tell us bow to transform the functions ¥ 1o reach
our first step.

Proposition IL.2 The family %o = (v, k=0,..,N -1} given by:

S Y. . _

{ V= -l k=08 -2
0 _ .0
vy = VN N-1.N-)

is suck that only the reatriction of !,:‘R-_,, to [0.1/8] contains <40

10




Proof: In (19) the monomial x°4° is present only in g;,., . Writing the
details equation for vf and canceling the coefficient of Gu*, gives the desired
result. @

As previously, we apply a Gram-Schmidt onhonormahm»on that pre-
s+#s the above propeny Indeed, starting from vo we get an orthooormal
uw‘etsfumlv!l'go— {¥0*, k=0,.,N-1)}for which only ¥, contains

112 on [0,1/2]. These wavelets are defined using the detaiis equation
. X1 -2
vty = 3 G0 (20) + 2: G (2 ~n) k=0, N =12
nnl

It only remains to make this construction again for the right edge with
monomial 2+ and to expand all the boundary wa.elets of a factor 2. To-
gether with interior wavelets family ¥;. they form an orthonormal basis of
w,(l0.1]).

We have nov retch+d our first step since we have constructed a basis
of scaling functions for Vj{[v,1]) and a basis of wavelets for ¥;(10,1]) such
that in each family, only one function has & component on r°%° oa [6,1/2)
and only one function has a component on £ on [1-1/2].

As announced, we now pufmn the second step of our construction by
removing the function ,;:, x_; on the left edge and the corresponding ones,

yj;;_‘v, for the right edge.
The last technical point is the modification one should make to the wavelet
space. We have the following proposition:

Proposition I1.8 Define the subapace V(0. 1)) as
Vi(10.2]) = Vi{[0.1)) ~ span{@0i i by _n) (22)
Replace the two warelets ;“\ | and ¥ ﬂ, -y in the families Wg o and W5, by
8) = oy + N,
(23)

1 L3S
8 - a,p,y \+b'1.7)” N
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with a and b solutions of

aHY v +0Gh v = 0
(24)
aAd+¥= 1

and &, b’ solutions of the same set of equations with coefficients for the right
edge.

Then the new family W g oUW U¥E ; is an orthonormal bams ofu (10,1}),
the orthogonal complement of V,(16,1)) in V,4,(10.1)). Moreover every scaling
function of V;(]0,1]) end every mcelei of W, ([0, 1)) satisfies the homogeneous
bonndary conditions fICEOI(Q) = p1CLV(]) = 0.

Proof: We prove only the msult for the left edge.

Let us first recall that ¢ y .1 and ¥)3_, are respectively two basis func-
tions of V;([0,1]) and n,([o 1]; and ‘that V(00)) L Wia)). e° s
ther. orthogonal to all the other basis functions of V;(0,1]) and W (10, 1]).
Moreover ||©3%13; = 1if and only if a® + ¥ = 1. The same argument holds for
6! and therefore, with the new definition of ¥ 5o and W, WgoU ¥, UWg,
is a family of 2 orthonoemal functions.

Using the scaling {17) and detail (21) equations we get

Nt N=-2
6232(0 ‘V-l\+bG?\ ln)"’*l\* Z(aﬂow‘l'+u""‘ “) JHLN
am=0 na N

Taking into account (24), we get that that 67 is independent of &?’f,_v*, and
consequently belongs to ¥,4,([0. 1]). Since the orthonormal collection ¥g o\t
W, UWg, generates a closcd subspace of \v,ﬂ([O 1]). orthogonal to ¥;([0,1])
and of dimension 2’ = dxm!,“({(} 1)) dnml 0.1}, it is by definition

W,([0.1]) the orthonormal mmplemcut of V,(]0, 1]) in Va1 ((0,1]).
®

Remarks:

All these edge functions have the same regularity as the initial scaling
function 4.
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Moreover the 2N - 2 edges wavelets constructed before we remove \.? N
and «,MJ,N. have conserved their N vanishing moments. The modified
wavelets 6% and 6! belong to W;([0.1)) and are therefore orthonormal to
all the polvnomials included in V)({0,1]). But they have no reason to verify
(85,210 = (9], 1°!1) = 0, since these monomials have been excluded from
the edges of V}({0,1]). Hence only one vanishing moment for one wavelet at
each boundarv h’s been lost.

As in the .nitial construction, the modified scaling and detail relations

insure that fast aigorithms related to the different basis projections are avail-
able.

At this point however, we don't know exactly what kind of space the
multi resolution familvy V,([0.1]) »oproximace. This is the purpose of the
next subsection.

11.2 Approximation results
We now check the intuitive result that the wavelet basis derived from the

last censtruction is an orthonormal basis for suitable homogeneous spaces
on [0,1].We give a complete proof for the Dirichlet homogeneous boundary
conditions f{0) = f{1) = 0.i.e,CLO = CL: = 0. corresponding to H3([0, 1)).

Using our construction for CLO = CLI = 0, we first obtain a subspace
V5{{0,1)) defined by the orthon« « nal basis @30 U®; U S . with the partic-
ularity that only two scaling functions are non zero at the edges. It is known
that under some specific conditions (see the previous section) Vi([0.1) be-
longs to a multi resolution analysis of the bobolcv space H'(;O l]

Let us simplify the notations and write ,,J b e Oy and , = ¢!;. Then
we have the foliowing result:

Proposition I1.4 Let V,([0.1]) be the subspace spanned by the orthonormal
basis

{230 oon MO S MU b on v )

Assume these scaling functions have enough regularily to inroice

L) vifo. 1)) = HY(o. 1y,

12
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and that only »9?“\»..,, and ‘P"}.:-'u.\’ are non zero al 0 and | Then

U Vil0- 11 = U (5(00.1)) = span{edn_yi¢lae_y 1) = H3((0.1))

izx ”Z2x

Proof: Take a function f in H3([0,1]), and call IL;(f) and II;(f) its or-
thonormal projection onto V)([0.1;) and V;([0.1]). We have to establish the
relation

Jira (1f = Tt/ = 0 (25}

where the H'-norm is taken as i fi%, = [fli}. + ﬁg{i!}_;. Following the
density of V,({0,1]) in H'({0, 1]) this is equivalent to

Jim JIL(0) = T, ()lia: = 0
Now using the orthonormal basis of V;([0,1]) and V,{[0.1]) we have

AN ARS lﬁ],j(f)”w = [{f. ?f.v-i)z i[‘r’?,{\'—-l e + 1S r’j)-’-)«')l |!-‘>j,2l-N"H1

since the support of the 0 and | edges scaling functions d not overlap.
Because [l¢%y 4l = 1 and 95, belongs to H*([0.1] (du# to the regular-
ity of the initial function ¢), we have

ML) = WPl < G2 (0o + W ovha o)

where () is a constant independent of ). Therefore we have to check that

lim 2i{f,v vl = lim 21(f. 95 =0

j—4 20
To see this, we use the inequality
P foein < Gl flian (26)

with ('; independent of ;. which will be justified at the end of the proof. Let
us take now a sequence of functions ( fa)egrv convergent to f with respect to
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the H'.norm. for example f,(x) = f(7) (11-i) Applying the fast inequality
to f— f. we get
P = Fa i) S Gallf = fallan
It only remains to note that there exist an integer J, dependent of n, for
which _ N
VizJd 2{f - favinat = 2ol
Indeed, for fixed n we take J such that the suppoxts of v9 y_, and f, do not

overlap.
Making n tends to +oc, and conseyueatly j, leads to

32{20 ?"!(fﬁﬁgﬁv-x}; = 0.

Obviously the same arguments holds for the scalar product 2°1{f,¢%,, _\}|
and the proposition is proved. ®

We still have to establish the inequality (26). An integration by parts
imphes that
of

(f 2ol S llb‘;"v =5
where =¥ is a primitive of ¢, _,. Since 9, belongs to L7([0. 1]) we deduce
WS < G2

This assumption and the definition of the H'-norm leads to the desired resuit.
Thanks to this proposition and the definition of W, {[0.1") (see prop 11.3) we
deduce a decomposition of H}([0.1]) in term of wavelet basis,

Hy((0-1,) = Vi ([0.11) €D W0 13). (27)
22X
Remarks:
The proof for Neurnanr homogeneous conditions is similar and involves
the H-norm. More regularity is therefore needed for the basis functions and
a doublc integration by parts to the inequality corresponding to (26). In that

case, the approximated space is the strict subspace of H?*([0.1]) defined as
{f € H*(10,1)), £1(0) = 1) = 0}.

HR)




Some mixed homogeneous boundary conditior s, for example f(0) = f(1) =
FO{0) = fC¥(1) = 0, could also be addressed with a similar coustruction. In
this case, two scaling functions at each edge are removed from V| ([0, 1]) and
are employed to modify the wavelets of W,(10.1]). This construction leads
to a charactenzation of the functional space
H3((0,1) = {f € H3([0.1)). f(0) = f(1) =0 and f)(0) = f0)(1) = 0}.
Since the left and right basis functions do not interact at scale j, different
conditions could also be taken at 0 and 1.

The following section is related to the numerical estimates related to our
construction and to varicus topics connected to its application for partial
differential equation problems.

III NUMERICAL ESTIMATES

This section is devoted o the numerical estimates related to our construction
for two cases of homogenecus boundary conditions. i.e. the Dirichlet condi-
tions and the Neumanu . onditions. All the foillowing computations have
been carned out ceginning with the initial compactly supported function ¢
closest to linear phase constructed by 1. Daubechies [6] with N = 4. Since
no explicit analytic expressions exist. this function is defined through the
fiter coefficients A, used in the scaling equation (2). These coefficients are
provided in {6]:

hog = —.07576571478950. h_; = —.2963552764600, h_; = 4976186676328
hy = .8037387318031, h, = .29785779360331, h; = —.0992195435766
hy = —.01260396726203. A, = .03222310060405.

The corresponding interior wavelet v is defined using the coefficients g, of
the details equation (4) with ¢, = (=1)"A;x41-n-

II1.1 Dirichlet Boundary conditions

The application of the last section algorithm with C L0 = CL1 = 0 {Dirich-
iet condition) leads 1o a multi resolution analvsis of H1([0.1])). Three scaling
functions and four wavelets have to be added at cach bHhoundary (see section
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IT). These scaling functions are solutions of a modified scaling equation {17)
and are therefore characterized by the coefficients H  and H; ,. The cor-
responding numerical estimates (computed on & 16 decimal digits computer
with an error smaller than 107!} are listed in Table 1. The coefficients G} .
and G}, which occur in the modified detail equation (2i) are listed in Ta-
ble 2 and define com.pletely the edges wavelets. All the following figures are
obtained using the cascade algorithm [6]. The ttree r = 0 edge scaling func-
tions, as well as the three r = 1 edge sculing functions are represented on
Figure 2 at scale ) = 0. The corresponding wavelets are plotted on Figure 3.
Notice that due to the lack of symmetry of the initial scaling functions and
wavelets, the 1 = | edge functions can not be deduced from the r = 0 edge
functions using a simple trangformation.

III.2 Neumann Boundary conditicis

The same numerical estimates corresponding to th¢ Neurnann conditions,
1.e CLO=CL1=1, are listed in Tables 3 and 4. The Figures 4 and 3 repre-
sent respectively the scaling funciions and wavelets of this multi resolution
analysis.

Remarks:

Some zero coefficients are provided in Tubles 2, 3 and 4. They are ex-
pected as foll - <o for instance in Table 3 Hy, = Hg, = 0: since the scaling
functions 9, for the Neumann couditions, is by definition constant on th
intervai [0.1], it does not depend on 7, and »7 , which are respectively poly-
nomials of order 1 and 2 on {0,1/2]: this Jeads HY, = HQ, = 0 in Table 3.
Others zeros are expected using the same arguments.

II1.3 Quadrature formula

In order te use these wavelets basis for numerical purposes one question
needs still to be answered. Giver a function f. how can we define 2 projection
V(0. 1]), i.e. how can we estimate a set of coefficients ¢, ; occuring in relation
(12) and corresponding to f? The solution proposed here aims to compute
an approximation of the orthogonal projection of f on V([0 1)) defining
quadrature formula to estimate the roeflicients ¢, = [ fof ,. We define
below a quadrature formula of order N — | in the same philosophy as G.
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Beylkin et al. ([81) or W. Sweldens et al. ({13]). We are therefore looking for
weight coefficients w) & such that

N-1
[ e T wiafia) (28)
i .0

where the {a,, { = 0....N ~ 1} are N given points taken in the support of
9%, and such that the approximation is exact for the polyvomials of degree
less than or equal tu N - 1.

It appears that the weight coefficients w, ; are the solution of the following
linear systern:

N-1
‘/'tl;r".g,b = E W!.E(“\)l I = 0. ...,‘V -1 (?9)
120

Hence we need to evaluate the first N momeats of every edge scaling fu iction.
Multiplving the modified scaling equation (17) by z' leads to the N - |
equations:

N -2

/rgo_, (2) = L HY '/xl¢g“(2x)+ )y ”2.,‘/1‘10(21: -n) k=0..N-2

LT

Since the moments of order { of the interior function @, [ 2'é(z). can be esti-
mated using the classical recurrence relation given in {8]. (30) finally leads to
the following linear svstem AX, = b whcre tbe N dimensional vectors X, and
X(k) = fx vo.lt
b are defined as and
k) = T HL frfe(2r-n)k=0,...N-2
and where the entries of th matrix A depend only on the HY .. We easily
checked that this matrix is always ronsingular. (to see this, use the fact that
TNV IHD,) < 1 since [ed,ll = 1.
We first provide the numericai values of the moments o order (.0 < { < 3
for ¥ =4:

My = l()OOOO(l)()OOOHOO M), = -1.45319345240e-02
My = 2111771208 Re-04  Afy = 4.34510522842¢-02

I8

(30)




Then, the entnes of X) for I = 0,...,.V - 1 for the 0 and 1 edgs scaling
functions corresponding to Figure 1 (Dirichiet boundary conditions) are listed
in Table 5 and 6.

Using the values of these moments and the /V given points a,, we find the

weights w, » for every edge scaling function solving the liuear Vandermonde
svstem (29).

Remark:

A quadrature formula of same order has to be used to estimate the in-
terior scaling coefficients ¢;2 = [ fe,0. N < k < 2 — N — 1 to preserve a
constant order of accuracy all over the interval.

Acknowledgments:
This work has largely profited from discussions with Philippe Tchamitchian
and speciai thanks are due to him.

IV CONCLUSION

Compactly supported wavelets satisfying homogeneous boundary conditions
ou {0.1] have been constructed. All the tools required for the use of these
functions for numerical approximation of partial differential problems have
been detailed.

Even if all this construction extends by tensor product arguments to
higher dimensions. efficient bandling of general open sets with boundary
conditions is still an open problem.




LIST OF SYMBOLS USED

The BTpX code of the mathematical symbols used is given to clarify their
identity:

Hi([0.1]) : H71.0([0,1]) and a similar code for L% R) ; K'([0,1)) :
L([0,1)); C*{[0.1)); .

Vi([0,1)): \tilde{V}_j([0,1]) and same for W,([0,1]): }; : W, ; V,([0.1)])
: Wy([0, 1})

UV, : \overline{\bigcup.{j \in \Z} V.j} and same for {}V;, |J W,
X § 1EXZ 3 3

™ (2kx) :  {\bat \phi}-{(n)}(2K\pi);

;% ¢ \phi_{j,k},

$ro: \phi_{E,0}; &, &,

;}:}ﬁ : \tilde{\varphi}~{0,\perp}_{j,k}; The same expressions are us-
ing substituting \varphi by \psi and \Phi bv \Psi.

(:) : \Bigl("{n}_{k)\Bigl) ; {(,): \langle , \rangle: 2
: \emptyset

hg . : m~0_{k,n}; A}, ;. ;4gi.and the sune expressions with uppercase

H and G.

fEW e {(cLoy} ; Ly pe:  p.{3.x}: =
\Longleftrightarrow

Ae ¢ \lambda Xk ; pe : \mu_k; af . : \alpha~0_{k,z}.
Bin: \beta®0_{k,n}:0%: \Theta_j"0: g NPNI_{E 1Y
ILOF) - \Pi_j(E) . 3. \frac{\partial f}{\partial x}
Asa-4p 0 \ebi {[\frac{iHa},1-\frac{i}{a}]} : = \xi_j-o.

& : \approx;




FIG. 1. The edge scaling functions 23, and 3, for N=2. 8

ey

[«X 1.8 -

[-X -

O ar -
oo~
ok

O R} ~4

D a)r —

~ " "
© ] » &
s constan!

v0.0

or [0:1] and 3, is a polynomial of order 1.

2]




Table 1: The left and right filter coefficients, H], and H},, for
the construction with Dirvichiet homogeneous boundary conditions

J(0) = f(1) = 0.

n H, H, .

0 6.309i928199e-01  5.9981737601¢-01
1 9.6514114329¢-02  1.0261005527-01
2 3.9878718285e-02  2.2276045032¢-02
4  -3.9847422688¢-01 -3.8101599048e-01
5 -4.6171223341e-01 -3.5413483844¢-01
6 -4.3450617898¢-01 -3.7772113863e-01
7 -1.68233247242-01 -4.0626758997e-01
8 3.9512280064€-02 -2.213983%764¢-01
9  7.4334018686e-03  1.3533422358e-02
10 -1.9004116026e-02 3.9763630210e-02
=1 0 -7.1465107925¢-01 -6.7917200335-01
1 1.04878360312-01  7.0564886681¢-02
2 -1.0275008552e-01 -6.1435155066e-(12
4 -2.2668171853e-02 1.0664367825¢-01
5 -3.4790471529e-01 -6.9557725550e-02
6 -5.4438357%042-01 -3.126691303%¢-01
7 -2.1013565982-01 -5.5031934226e-01
8§ 7.1146281575¢-02 -3.3164862337e-01
9 8.8701254411e-03 2.0464047232¢-02
10 -2.2677220474e-02  5.2318055022¢-02
0 -2.23627735062-01 -3.4534868269e-0!
1 5.0082651220e-01  3.9554860543¢-01
2 -1.1T07T940876e-01  -5.1663820154e-02
4  -7.0092772722e-01 -3.4828534215¢-01
5 -4.80724996062-02 -5.6934808461e-01
6  4.1374409814e-01 -1.6719040087e-01
7 1.2755670687¢-01  4.0449494649-01
8 -6.4833220288e-02 2.8819962720e-01
9 -49723065158¢-03 -1.41958658126-02
1.2712119110e-02  -3.62929229} 3e-02

Note: For the nght edge (2 = 1) the coeficients {H{ .} are related to the scaling function
sp)l 3:_y Wnd are listed {rom nght to lkeft. The case n=3 corresponds to the scaling function

we have removed and will therefore not appear.
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Table 2: The left and right wavelet filter coefficients, G, and G},
for the construction with Dirichlet homogeneous boundary condi-

tions f(0) = f(1) = 0.

n . L
k=0 0 20137223334¢-01 2.4372875232¢-01
1 5.422970716%e-01  4.580197383%¢-01
2 -7.0645626067«-01 -3.4317083287e-01
4 3.51083134%1e-01  7.4312944286¢-01
5  1.5369973568e-01 -1.4764113471e-01
6 -1.0259167455¢-01 -1.8898505160e-01
7 -7.3615428961e-02 4.5387871214e-02
8§ 5.57T24J19877¢-02 3.3997823918e-02
9 261854704220-03 -1.5613217439¢-03
1N -6.6945353810e-03  3.9916501406e-02
k=1 0 -6.6848468%45e-14 8.0232416876-14
1 28233692882¢-02 3.8745242758e-01
2 -5.7322775598e-02 -6.7680392343e-01
4  3.9385336874e-02 -3.9552887470e-01
5 -1.1474607116e-01 3.7058026047e-01
6 -29055557195e-01 2.8173001140e-01
7 8.0074010314e-01 -1.0486107295¢-01
8 -4.970491772%-01 -8.7104529274e-02
9 -29500466849¢-02 3.4442984618e-03
10 7.5420420519e-02  8.8056382200e-03
k=2 0 6.2086522836e-14 -5.0803891077e-13
1 -1.4802084915¢-14 -4.0101204690e-13
2 6.7504052837¢-02  1.0243643353e-02
4 -36141627882¢-01 1.1309599230e-01
3 T.8642373898e-01 -5.4933710003e-01
6 -4.9310306778e-01 7.6956164180¢-01
T 2.142171346Ce-04  -2.890589793%¢-0!
8  5.6564958243e-02 -9.0239164667¢-02
3  -1.0869221407e-03 1.2346812450e-02
10 2.7788077166e-03  3.1565662736e-02
k=3 0 -2.5584258650e-02 -1.6585775990e-02
I -6.5876783667e-01 -6.842014393%e-01
2 -6.8353393454¢-01  -6.458526493%¢-01
4 -3.033i012100e-01 2.5993685887e-02
3 -3.7971289187e.02 -2.7855604418e-0)
6 6.7315440450e-02 -1.5252127585e-01
7 1094467023102 8.7162800751e-02
8 -T.6074757976e-03 7.2638444393¢-02
9 -3.8773215636e-04 -2.8584982261¢-03
10 9912693138404 -7.3079307303¢-03

Note: Fot the right edge (x = 1) the coefficients {G} .} are related to the wavelet L
and are listed from right o left. The case u=3 corresponds to the scaling function we have

remnoved and will therefore not appesr
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Table 3: The left and right filter coefficients, H{ K and H}_, for
the construction with Nz.ann homogeneous boundz.ry conditions

fO0) = f) = 0.

n HY, HI,
k=0 0 7.0710678119=-01 T.0710678119e-01
1 0.0000000000e+00 0.00000000002+-00
2 0.6000000000e+00 0.0000000000e-00
4 3.7875137560e-01 3.3279641260e-01
5 4.1933439083e¢-01  3.1763076592¢-01
6 3.9462541967e-01 3.3872841031e-01
7 1.5279210977e-01  3.6432796801e-01
8 -3.58R3680933e-02 1.9854306805¢-01
9  6.7511337557e-03 -1.3947818884e-02
10 1.7259840309e-02 -3.5658770113e-02
k=1 0 -6.339987898%e-01 -6.2399400714e-01
1 2.72561358154e-01  2.4746950442¢-0!
2 2.8255565204e-02  2.1217268985%e-02
4  9.30331i3429«-02 3.1423763181e-02
5  3.9540506240e-01 1.5138263011e-01
6  5.479%002074-01 3.4935923414#-01
7 2116535169301  5.4440142107e-01
8§ -6.7366756980e-02 3.2169170065¢-01
9  -9.015%055096e-03 -2.036560378%¢-02
10 2.3049918460e-02  -5.2066376096e-02
k=2 0 6.3813937203e-(2  1.4204323343e-C1
1 -6.2433761707=-01 -3.3003493793¢-01
2 -7.3065386969e-03  1.7693538529¢.02
4 -6.2421804274e-01 -4.0650580195e-01
5 -1.3488453082e-02 -4.9029535249¢-01
6 4.3699790930e-01  -9.0099784088e-02
T 1.4222043082e-01 4.37273141€32-01
8 -6.937436928%e-02 3.0298274581e-01
9 -55998777298e-03 -1.3509344332¢-02
10 1.43165376132-02  -3.9650941036¢- 02

Note: Forthe right edge (z = 1) the coeficiemta {H} , } are related to the scaling function
~;}',,_3 and are hsted from right to left. The case n=3 corresponds to the scaling function

we have removed and will therefore not appear.
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Table 4: The left and right waveiet filter coefficients, C}, and G} _,
for the construction with Neumann homogeneous boundary condi-

tions f11(0) = f)(1) = 0.

n kn Gia
k=0 0 2157828191401  2.3494978252¢-01
1 4.9572192648¢-01  4.8386498781e-01
2 7.2238470640e-01  5.2859034242-01
4 -3.9185512760e-01 -6.4278506397~-01
5 -1.2862537931e-01  4.9429597015e-02
6 9.6457537590e-02 1.2206776567¢-01
T 6.4796206853¢-02  -1.9638518548e-02
8 -4.7138034627¢-02 -1.1782477983e-02
9 -2.2555618915¢-03  7.3127496136e-04
10 5.7665333650e-03  1.8695653406e-03
k=1 0 35.2517520677e-13  5.5828490449¢-14
I 2.4258207630e-02  2.0458047986¢-01
2 6.0376140438¢-03 5.9531516311e-01
4 2.2848095434e-01  5.4090218399¢-01
5 -3.1810004520e-0i -4.1031183123¢-01
6 5.6338588265¢-01 -3.4180312799¢-01
T -3.2660919644e-01 1.2529183073e-01
8 2.8410901284e-01  1.0078064242¢-01
9 2.06215169170:-02 -4.17680815641e-03
10 -3.1681777360e-G2 - 1.0681616333¢-02
k=2 0 1.9660656197e-12 -2.7202352286e-12
I 3.0437460103e-12  -9.0382597736¢-12
2 5.54245%4564e¢-02  1.5213229661e-02
4 -2.7483194254e-01  1.2607(94728¢-01
3  6.0853476157e-01 -5.5744040614e-0!
6 -1.0850026370e-01 7.6287424658¢-01
T -6.0447233132¢-01 -2.86715200%0e-0!
8 4.1282047408¢-01 -8.8419425836e. 02
9 2.1554056091e-02  1.2267369323e-02
10 -3.5104754193e-02  3.1362539711e-02
k=3 0 1.99541691330e-01 1.8775994937¢-01
1 53813012840e-01  6.1793471320e-01
2 -6.88621021862-01 -6.0431551252¢-01
4 -4.2066297006e-01 -3.70193530637e-0?
3 -T.4122879021e-02 -3.8404010349¢-0!
6 1.1518683604e-01 -2.0032106281e-01
T 2.186128610%-02  1.3094817230e-01
8 -1.5750923988e-02 1.069]1409643¢-0)
9 .T.6389913001e-04 -4.3365631441e-03
10 1.9529722670e-03  -1.10R6787800e-02

Note: For the nght edge (2 = 1) the coeflicients {C} .} are related to the wavelet ¢!

J

2=

and are listed from right to left. The case n=3 comesponds to the scaling functions we
have removed end will therefors not appear.
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Table 3: The first four moments for the 0 edge scaling function
of Figure 3 {i.e satisfying Dirichlet homogeneous boundary condi-
tions).
X v&g v‘@ w%,, o
1=0 | -1.80518411015e4-00 1.58610287947¢ 01 1.42577315923e-01
1| -3.4397899088%e+00 -1.34279194417e+00 -1.66298580543e 13
2| -8.12722032481+00 -5.41163047176e+4+00 7.8G3053924956~-01
3 l -2.13375831107e4+01  -1.76739256332e+01 4.70776! 1598%9e+-00

1
i
]

Note: For this case the monomial r copld be expanded as 2 kines’ _ombinavon of #f .
and ¢{ . This explains the zero value of the second moment of 5§ ;.

Table 6: The first four moments for the 1 edge scaling function
of Figure 1 (i.e satisfying Dirichlet homogereous boundary condi-
tions).
X i ¢loo Yo X
1=0 1 -2.03632572831e4+00 2.11233673136e-0] 2.34792863276¢-01
I=1 [—5.17867977397&00 -1.87776044074e-00  -4.21625644274¢-13

1=2 | -1.57657032623e4-01 -1.04701396775¢-01 1.27839462595e+00
=3 | -5.248994848%4¢+01 -4.33961860524e+01 1.15515969500¢+ 01

Note: same remarts us Table $ for the value of the second mowment of pg 4




a)The three scaling functions for the left edge
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a)The four wavelsts ko the left adge
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a)The three scaling functions for the lsft edge
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a)The four wavelats for the ift edge
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